Measure Theory with Ergodic Horizons Lecture 21

Fubini - Torelli Krevem.

(i)
$$\iint_{X} \iint_{Y} I_{x}(y) dy(y) dp(x) = \iint_{XxY} I_{xxY} = \iint_{Y} \iint_{X} I_{y}(x) dy(y) dy(y).$$

(i) Fabini. If f is prov-inlegrable then:
(i) via $\iint_{X} dv$ and $gvar \iint_{Y} dp$ are p and v-measurable and integrable.
(ii) $\iint_{X} \iint_{Y} I_{x}(y) dv(y) dp(x) = \iint_{XxY} I_{x}(y) dv(y) = \iint_{Y} I_{y}(x) dv(y).$
Remark. All conditions in this theorem are necessary; examples will be given in thus
hemark. All conditions in this theorem are necessary; examples will be given in thus
lamode dvaally, one first applies Touch to 191 to show let f is integrable, and
only afterwards applies Fubini to F.
Example. For sets N and M (e.g. N=M=N) and conching measures p and v on M and N,
necessary, we already know the Fubini-Tonelli tow boric real analysis:
(a) Touch. If (ann)(n,v)eNxM is a matrix of nonnegative reals, then
 $\sum_{x \in N} \sum_{m \in N} a_{nm} = \sum_{m \in N} \sum_{m \in N} a_{mm}.$
(b) Fubini. If (ann)(n,v)eNxM is an absolutely summable matrix of reach, i.e. $\sum_{x \in N} I_{x \in N}$
(c) Fubini. If (ann)(n,v)eNxM is an absolutely summable matrix of reach, i.e. $\sum_{x \in N} I_{x \in N}$
(d) Fubini. If (ann)(n,v)eNxM is an absolutely summable matrix of reach, i.e. $\sum_{x \in N} I_{x \in N} = \sum_{x \in N} a_{nm} = \sum_{x \in N} a_{nm} = \sum_{x \in N} a_{nm}$

tubini-Tonelli for sets. let (X, I, p) and (Y, J, 7) be J-finite neasure spaces. Let RE I. Then:

(b)
$$x \mapsto \mathcal{V}(R_x)$$
 and $y \mapsto \mu(R^3)$ are \mathcal{I} and \mathcal{J} -measurable, neglectively.
(c) $\int \mathcal{V}(R_x) d\mu(x) = \mu \times \mathcal{V}(R) = \int \mu(R^3) d\mathcal{V}(g).$
 \widetilde{X}

Proof. Again let
$$C := \{R \in \mathcal{I} \otimes \mathcal{J} : (b) \text{ and } (c) \text{ hold for } R\}$$
. Note that $C \supseteq \mathcal{I} \times \mathcal{J}$, i.e.
 C contains each vectaringle $U \times V$, becase the fundious $X \mapsto v((U \times V)_X) = \{v(V) \text{ if } x \in U\}$
 $= v(V) \cdot \mathcal{I}_U(x) \text{ and } Y \mapsto \mu((U \times V)^{\vee}) = \mu(U) \cdot \mathcal{I}_V(b) \text{ are just constant unlipses of}$
indicator functions of neusarche sets, and here are necessrable. For the comore,
 $\int v((U \times V)_X) d\mu(x) = \int v(V) \cdot \mathcal{I}_U(x) d\mu(x) = v(V) \cdot \mu(U) = \mu \times v(U \times V)$, similarly, for the
 X

horizontal fiber.
It is enough to prove assuming p and p are finite by the usual argument of
whiching
$$X = \bigcup X_n$$
 and $Y = \bigcup Y_m$ for some measurable hinite nearshipe sets $X_n Y_m$,
so $X_x Y = \bigcup X_n \times Y_m$ and $R = \bigcup (R \cap X_n \times Y_m)$.
Nymern

Using the Britoness of
$$p$$
 and P , it is not hard to verify that C is
dosed under complements. C is also closed under finite disjoint unider by the
linearity of the integral: if $R = LIRi$ then $I_R = \sum I_{Ri}$, and the linearity of the
integral applies. This implies that C contains the algebra A generated by the
rectangles becase finite unions at rectangles are timite disjoint unions of
(different) rectangles. But this doesn't imply closedness under timite nondisjoint

union becase
$$R = R_1 \vee R_2$$
 then $I_R = I_{R_1} + I_{R_2} - I_{R_1 \wedge R_2}$
let's ask ourselves if $R = \bigvee R_n$, due is $x \mapsto y(R_x)$ a limit of $x \mapsto y((R_n)_x)$?
Indeed the manner is when the union is monotone. This shows that C is dosed
under
- ctil increasing unions: $R = \bigotimes R_n$, then by the increasing monotonicity of massive, we
have $M + (x \mapsto y((R_n)_x)) \nearrow (x \mapsto y(R_n))$ and by $M(T_1, we have
 $\int v(R_x) d\mu(x) = \lim_{n \to \infty} \int y((R_n)_x) d\mu(x) = \lim_{n \to \infty} \mu \times y(R_n) = \mu \times y(R),$
and sime for the havior ortal fiber.
-decreasing interestions: $R = \bigotimes R_n$, then we use the finiteness of the measures $\mu_1 \nu$, and
 $\mu \times \nu$ to replace a the choice organized increasing monotonicity with durinessing
monotonicity and $M(T_1, with DCT_1)$$

To summarize, we have shown Mt & contains the algebra A and is closed under increasing unious and decreasing intersections. It than follows from the Monotone Mass lemma that C we tains <A> = 2 & J, so C= 2 & J.

Def. A whether C of subsets of some set X is called a monotone class if it is closed unles increasing unions and decreasing intersections. The monotone class generated by a collection A = P(x) is the =-least monotone day contrining A, namely, the intersection of all monotone classes containing A.

Note Met S(U) is a monotone class: if (Vn)
$$\in$$
 S(U), then UV (WVh = WUVh
EC and UV (A) Vh = A (UVVh) EC bene C is a monotone class.
Also, for all A E A, S(A) = A bene A a C and A is down under finite
unious. Thus, S(A) = C for each A EA. But then, switching the roles of
U and V, we see that for each VEC, the collection S(V) vortains A
bene for each A E A, VG S(A), i.e. AUVCC bene VUAEE. Thus,
S(V) = C. Here for all U, VEC, we have UVVCC.

We now delace Fubini-Towelli for IOJ-machine functions.

Theorem (Fubini-Tonelli for I to J). Let
$$(X, I, \mu)$$
 and (Y, S, ν) be think measure spaces.
Let $f: X \times Y \rightarrow \overline{R} := [-\infty, \infty]$ be a $\overline{J \oplus J}$ - measurable function. Then:
(a) $f_X: Y \rightarrow \overline{R}$ and $f^3: X \rightarrow \overline{R}$ are \overline{J} and \overline{J} -measurable for all $x \in X$ and $y \in Y$
(b) Tonelli. If $f \ge D$, then:
(i) $x \mapsto \int f_X d\nu$ and $y \mapsto \int f^3 d\mu$ are \overline{J} and \overline{J} -measurable.
(ii) $\int \int f_X(y) d\nu(y) d\mu(x) = \int f d(\mu \times \nu) = \int \int f^3(x) d\mu(x) d\nu(y)$.
(c) Fubini. If f is $\mu \times \nu$ -integrable then:

(i)
$$x \mapsto \int f_x dv$$
 and $y \mapsto \int f^2 d\mu$ are J and J -measurable and integrable.
(ii) $\int \int f_x(y) dv(y) d\mu(x) = \int f d(\mu \times v) = \int \int f^2(x) d\mu(x) dv(y).$
 $X = Y$
 $X = Y$